Mixed convection MHD hybrid nanofluid flow between two parallel rotating discs with joule heating and chemical reactions using bvp4c

نویسندگان

چکیده

Several characteristics of the resulting fluid are influenced by nanoparticle suspension. Understanding heat transfer mechanism in nanofluids is necessary for many production and manufacturing applications. The current study examines effects mixed convection MHD Joule heating on flow ( TiO 2 – GO/water) hybrid nanofluid /water) porous media between two parallel, infinitely spinning discs when radiation occurs. Using “bvp4c” function MATLAB, governing equations numerically solved. A graphic used to show how important parameters affect velocity, temperature, concentration nanoparticles. Finally, a table depicting interactions several factors skin friction, Nusselt number, Sherwood number at upper lower created. findings that while local fraction drops with an increase parameter, transmission rate both increases. Additionally, top reduced as magnetic increase. This study’s will be helpful numerous nanofluid-based medicinal applications, architectural design systems, better oil recovery transportation procedures, among other sectors.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

MHD Mixed Convective Peristaltic Motion of Nanofluid with Joule Heating and Thermophoresis Effects

The primary objective of present investigation is to introduce the novel aspect of thermophoresis in the mixed convective peristaltic transport of viscous nanofluid. Viscous dissipation and Joule heating are also taken into account. Problem is modeled using the lubrication approach. Resulting system of equations is solved numerically. Effects of sundry parameters on the velocity, temperature, c...

متن کامل

Chemical Reaction Effects on Bio-Convection Nanofluid flow between two Parallel Plates in Rotating System with Variable Viscosity: A Numerical Study

In the present work, a mathematical model is developed and analyzed to study the influence of nanoparticle concentration through Brownian motion and thermophoresis diffusion. The governing system of PDEs is transformed into a coupled non-linear ODEs by using suitable variables. The converted equations are then solved by using robust shooting method with the help of MATLAB (bvp4c). The impacts o...

متن کامل

Influence of Newtonian Heating on Three Dimensional MHD Flow of Couple Stress Nanofluid with Viscous Dissipation and Joule Heating

The present exploration discusses the influence of Newtonian heating on the magnetohydrodynamic (MHD) three dimensional couple stress nanofluid past a stretching surface. Viscous dissipation and Joule heating effects are also considered. Moreover, the nanofluid model includes the combined effects of thermophoresis and Brownian motion. Using an appropriate transformation, the governing non linea...

متن کامل

Influence of Thermophoresis and Joule Heating on the Radiative Flow of Jeffrey Fluid with Mixed Convection

The aim of the present study is to address the magnetohydrodynamic (MHD) radiative flow of an incompressible Jeffrey fluid over a linearly stretched surface. Heat and mass transfer characteristics are accounted for in the presence of Joule heating and thermophoretic effects. Series solutions by the homotopy analysis method are constructed for the velocity, temperature and concentration fields. ...

متن کامل

Nanofluid Condensation and MHD Flow Modeling over Rotating Plates Using Least Square Method (LSM)

In this study, nanofluid condensation and MHD flow analysis over an inclined and rotating plate are investigated respectively using Least Square Method (LSM) and numerical method. After presenting the governing equations and solving them by LSM, the accuracy of results is examined by the fourth order Runge-Kutta numerical method. For condensation, modeling results show that the condensate f...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Advances in Mechanical Engineering

سال: 2023

ISSN: ['1687-8132', '1687-8140']

DOI: https://doi.org/10.1177/16878132231179611